Newton's Law of Viscosity

牛顿黏度定律

Newton’s Law of Viscosity

先定义矢量$\pmb{\tau }$

$\tau_{yx}$物理的意义:在垂直于y方向的单位面积的面上所受到x方向上的力,可以表达为

其中
$\tau$是流体所受的剪应力$[Pa]$
$ \mu $是流体的黏度 $[Pa·s]$
$ \frac {dv_x}{dy} $是$x$方向上速度的分量在$y$方向上的梯度$ [s^{−1}]$


1.直角坐标系($ x, y, z $)

直角坐标系Cartesian coordinates ($\textit { x,y,z }$): NO.
$\tau_{xx}=-\mu[2\dfrac{\partial v_x}{\partial x}]+(\dfrac{2}{3}\mu-\kappa)(\nabla\cdot \pmb v)$ 1-1
$\tau_{yy}=-\mu[2\dfrac{\partial v_y}{\partial y}]+(\dfrac{2}{3}\mu-\kappa)(\nabla\cdot \pmb v)$ 1-2
$\tau_{zz}=-\mu[2\dfrac{\partial v_z}{\partial z}]+(\dfrac{2}{3}\mu-\kappa)(\nabla\cdot \pmb v)$ 1-3
$\tau_{xy}=\tau_{yx}=-\mu[\dfrac{\partial v_y}{\partial x}+\dfrac{\partial v_x}{\partial y}]$ 1-4
$\tau_{yz}=\tau_{zy}=-\mu[\dfrac{\partial v_z}{\partial y}+\dfrac{\partial v_y}{\partial z}]$ 1-5
$\tau_{zx}=\tau_{xz}=-\mu[\dfrac{\partial v_x}{\partial z}+\dfrac{\partial v_z}{\partial x}]$ 1-6

其中


2.圆柱坐标系($r,\theta, z$)

圆柱坐标系Cylindrical coordinates coordinates ($\textit {r, $\theta$, z }$): NO.
$\tau_{rr}=-\mu[2\dfrac{\partial v_r}{\partial r}]+(\dfrac{2}{3}\mu-\kappa)(\nabla\cdot \pmb v)$ 2-1
$\tau_{\theta \theta}=-\mu[2(\dfrac {1}{r}\frac{\partial v_\theta}{\partial \theta}+\frac {v_r}{r})]+(\dfrac{2}{3}\mu-\kappa)(\nabla\cdot \pmb v)$ 2-2
$\tau_{zz}=-\mu[2\dfrac{\partial v_z}{\partial z}]+(\dfrac{2}{3}\mu-\kappa)(\nabla\cdot \pmb v)$ 2-3
$\tau_{r \theta}=\tau_{\theta r}=-\mu[r \dfrac {\partial}{\partial r}(\dfrac {v_\theta}{r})+\dfrac {1}{r} \dfrac {\partial v_r}{\partial \theta}]$ 2-4
$\tau_{\theta z}=\tau_{z \theta}=-\mu[\dfrac {1}{r} \dfrac{\partial v_z}{\partial \theta}+\dfrac {\partial v_\theta}{\partial z}]$ 2-5
$\tau_{z r}=\tau_{r z}=-\mu[\dfrac{\partial v_r}{\partial z} + \dfrac{\partial v_z}{\partial r}]$ 2-6

其中


3.球坐标系($r, \theta, \phi $)

球坐标系Spherical coordinates($\textit {r, $\theta$, $\phi$ }$): NO.
$\tau_{rr}=-\mu[2\dfrac{\partial v_r}{\partial r}]+(\dfrac{2}{3}\mu-\kappa)(\nabla\cdot \pmb v)$ 3-1
$\tau_{\theta \theta}=-\mu[2(\frac {1}{r}\dfrac{\partial v_\theta}{\partial \theta}+\dfrac {v_r}{r})]+(\dfrac{2}{3}\mu-\kappa)(\nabla\cdot \pmb v)$ 3-2
$\tau_{zz}=-\mu[2(\dfrac{1}{r sin \theta} \dfrac {\partial v_\phi}{\partial \phi}+\dfrac {v_r+v_\theta cot \theta }{r})]+(\dfrac{2}{3}\mu-\kappa)(\nabla\cdot \pmb v)$ 3-3
$\tau_{r \theta}=\tau_{\theta r}=-\mu[r \dfrac {\partial}{\partial r}(\dfrac {v_\theta}{r})+\dfrac {1}{r} \dfrac {\partial v_r}{\partial \theta}]$ 3-4
$\tau_{\theta \phi}=\tau_{\phi \theta}=-\mu[\dfrac {sin \theta}{r} \dfrac{\partial }{\partial \theta}(\dfrac {v_\phi}{sin \theta})+\dfrac {1}{r sin \theta} \dfrac {\partial v_\theta}{\partial \phi}]$ 3-5
$\tau_{\phi r}=\tau_{r \phi}=-\mu[\dfrac {1}{r sin \theta} \dfrac {\partial v_r}{\partial \phi}+r \dfrac {\partial}{\partial r}(\dfrac {v_\phi}{r})]$ 3-6

其中


参考文献

  1. R. Byron Bird, Warren E. stewart, Edwin N. Lightfoot. Transport phenomena:Revised second edition John Wiely &Sons, Inc.
-------------本文结束感谢您的阅读-------------