Fourier's Law of Heat Conduction

傅里叶热传导定律

Fourier’s Law of Heat Conduction
热通量Heat Flux 表达式

其中

$ \pmb q $ 是单位面积上的热通量, $W·m^{−2}$,
$k$ 是材料的热传导系数, $W·m^{−1}·K^{−1}$,
$\nabla T$ 是温度梯度,$K·m^{−1}$.

$q_x$物理的意义:在x方向上单位面积的热通量,可以表达为

其中
$k$是材料的热传导系数, $W·m^{−1}·K^{−1}$,
$ T$是物体的温度, $K$
$ x $是长度, $m$


1.直角坐标系($ x, y, z $)

直角坐标系Cartesian coordinates ($\textit { x,y,z }$): NO.
$q_x=-k\dfrac {\partial T}{\partial x}$ 1-1
$q_y=-k\dfrac {\partial T}{\partial y}$ 1-2
$q_z=-k\dfrac {\partial T}{\partial z}$ 1-3

2.圆柱坐标系($r,\theta, z$)

圆柱坐标系Cylindrical coordinates coordinates ($\textit {r, $\theta$, z }$): NO.
$q_r=-k\dfrac {\partial T}{\partial r}$ 2-1
$q_\theta=-k \dfrac {1}{r} \dfrac {\partial T}{\partial \theta}$ 2-2
$q_z=-k\dfrac {\partial T}{\partial z}$ 2-3

3.球坐标系($r, \theta, \phi $)

球坐标系Spherical coordinates($\textit {r, $\theta$, $\phi$ }$): NO.
$q_r=-k\dfrac {\partial T}{\partial r}$ 3-1
$q_\theta=-k \dfrac {1}{r} \dfrac {\partial T}{\partial \theta}$ 3-2
$q_\phi=-k \dfrac {1}{r sin \theta} \dfrac {\partial T}{\partial \theta}$ 3-3


参考文献

  1. R. Byron Bird, Warren E. stewart, Edwin N. Lightfoot. Transport phenomena:Revised second edition John Wiely &Sons, Inc.
-------------本文结束感谢您的阅读-------------