Fick's Law of Binary Diffusion

菲克扩散(第一)定律

Fick’s (First) Law of Binary Diffussion

物质扩散通量Diffusion flux表达通式

在单位时间内物质 A 通过垂直于扩散方向的单位截面积的扩散物质流量,$kg\cdot m^{−2} \cdot s^{−1}$,与该截面处的浓度梯度成正比。

其中

$\mathscr{D}_{AB }$ 是物质 A 在物质 B 中的传质系数,$ m^2\cdot s^{-1}$,
$ \rho $ 物质的密度, $kg·m^{−3}$,
$\nabla w_A$ 是物质 A 的浓度梯度,$kg·m^{−2}$.

浓度梯度 $w_{Ax}$表达式为


1.直角坐标系($ x, y, z $)

直角坐标系Cartesian coordinates ($\textit { x,y,z }$): NO.
$j_{Ax}=-\rho \mathscr{D} _{AB}\dfrac {\partial w_A}{\partial x}$ 1-1
$j_{Ay}=-\rho \mathscr{D} _{AB}\dfrac {\partial w_A}{\partial y}$ 1-2
$j_{Az}=-\rho \mathscr{D} _{AB}\dfrac {\partial w_A}{\partial z}$ 1-3

2.圆柱坐标系($r,\theta, z$)

圆柱坐标系Cylindrical coordinates coordinates ($\textit {r, $\theta$, z }$): NO.
$j_{Ar}=-\rho \mathscr{D} _{AB}\dfrac {\partial w_A}{\partial r}$ 2-1
$j_{A\theta}=-\rho \mathscr{D} _{AB} \dfrac {1}{r} \dfrac {\partial w_A}{\partial \theta}$ 2-2
$j_{Az}=-\rho \mathscr{D} _{AB}\dfrac {\partial w_A}{\partial z}$ 2-3

3.球坐标系($r, \theta, \phi $)

球坐标系Spherical coordinates($\textit {r, $\theta$, $\phi$ }$): NO.
$j_{Ar}=-\rho \mathscr{D} _{AB}\dfrac {\partial w_A}{\partial r}$ 3-1
$j_{A\theta}=-\rho \mathscr{D} _{AB} \dfrac {1}{r} \dfrac {\partial w_A}{\partial \theta}$ 3-2
$j_{A\phi}=-\rho \mathscr{D} _{AB} \dfrac {1}{r sin \theta} \dfrac {\partial w_A}{\partial \theta}$ 3-3


参考文献

  1. R. Byron Bird, Warren E. stewart, Edwin N. Lightfoot. Transport phenomena:Revised second edition John Wiely &Sons, Inc.
-------------本文结束感谢您的阅读-------------